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Discontinuous Galerkin Method (DGM)

® Motivation

#® DGM Iin Cartesian Geometry
s DGM in 1D (Algorithm)
» Modal & Nodal versions

#® Extension of DGM to 2D
» Cartesian Geometry
» Spherical Geometry (Cubed-Sphere)

Flux form SW Model
Numerical experiments & Results
Parallel Implementation
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DGM: Motivation

# DGM may be considered as a hybrid approach
combining the finite-volume and finite-element
methods.
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DGM: Motivation

# DGM may be considered as a hybrid approach
combining the finite-volume and finite-element
methods.

# Advantage:

s Inherently conservative (Monotonic option)
s High-order accuracy & High parallel efficiency
» “Local” method & AMR capable

o Potential: Application in climate and atmospheric
chemistry modeling, and NH modeling.
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DGM may be considered as a hybrid approach
combining the finite-volume and finite-element
methods.

Advantage:
s Inherently conservative (Monotonic option)
s High-order accuracy & High parallel efficiency
» “Local” method & AMR capable

Potential: Application in climate and atmospheric
chemistry modeling, and NH modeling.

Popular in CFD and other engineering applications
(Cockburn and Shu 1989-98).
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DGM: Motivation

9

DGM may be considered as a hybrid approach
combining the finite-volume and finite-element
methods.

Advantage:
s Inherently conservative (Monotonic option)
s High-order accuracy & High parallel efficiency
» “Local” method & AMR capable

Potential: Application in climate and atmospheric
chemistry modeling, and NH modeling.

Popular in CFD and other engineering applications
(Cockburn and Shu 1989-98).

Global SW model: Giraldo et al. (JCP, 2002);
Nair, Thomas & Loft (MWR, 2005).

=4

CAR

DGAM —p.3/4



DGM in 1D

® 1D scalar conservation law:
5’_U N OF(U)
ot ox
with initial condition Up(z) =U(z,t=0), V€

=0 in Qx(0,7),

# The domain €2 (periodic) is partitioned into N,
non-overlapping elements (intervals)

[] — [xj—l/vaj—l—l/Q]’ ] — 1, C e Nx, and
Az = (37]’+1/2 — %'—1/2)
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DGM-1D: Weak Formulation

# A weak formulation of the problem is obtained by
multiplying the PDE by a test function ¢(z) and
integrating over an element /;:

)

Integrating the second term by parts —

/I aUéf’t) o(z)dz — /I F(U(x,1)) agf) da +

F(U(xj—l—l/% t)) 90(37];1/2) _ F(U(xj—l/% t)) Qp(w;r_l/g) = 0,

8_U N OF(U)
ot ox

]¢@mxza

where p(z7) and p(2™) denote "left" and "right" limits

ﬁ NCAR DGAM - p.5/4



DGM-1D: Flux term

(—) (+) (=) (+)

N N

| I |

X:_1/2 X172

# Flux function F'(U) is not uniquely defined at ;. ;

® F(U)is replaced by a numerical flux function F(U),
dependent on the left and right limits of the
discontinuous function U. At the interface ;. /,

F(U)j—Fl/Q(t) — F(U($;+1/2,t), U(:E;_l/gv t))

# Typical flux formulae: Gudunov, Lax-Friedrichs, Roe,
HLLC, etc.
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DGM-1D: LF Flux

# For the present study, Lax-Friedrichs numerical flux is
used:

A

F(a,b) = =[F(a)+ F(b) —a(b—a)],

!
2
where @ is the upper bound on |F'(U)|.

#®  Space discretization:
Let V¥ be a finite dimensional space such that
VE = {p:pl, €Pr(l;)} where Px(1;) is the space of
polynomials in I; of degree at most &, Vj =1,..., N,.

# The approximate solution Uy (x,t) ~ U(z,t) and the test
function ¢, = p are in V.

/]
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DGM-1D: Space Discretization

/I aUha(?t) op(x)dr = /1 F(Up(z,1)) 8905;(%) Jr —

J J

(U 12t 9n(37 4 10) + F(UR) o1 0(®) n(]y )|

# Choose an orthogonal basis set spanning the space
V¥, A set of Legendre polynomials,
B={F/(£),¢=0,1,...,k} is agood compramise
between accuracy and efficiency.

# Use a high-order Gaussian quadrature rule to evaluate
the integrals, and that defines the computational grid.

# [or the present study, the Gauss-Lobatto-Legendre
(GLL) quadrature rule is employed.

/]
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DGM-1D: Space Discretization

# Map every element I; onto the reference element
—1,+1].
# Introduce a local coordinate ¢ € |—1, +1] s.t.,

2(x —x4) 0 2 0
J
= Tj = (Tj_1/9FT; 2 = — = .
5 A.f] | ( j—1/2 ]+1/2)/ o1 A.f] ag
Regular Element Reference Element
I; ;
4+ @ @ @ +— — 4+ @ @ @ +7
X112 X 12 -1 GLL Grid +1
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DGM-1D: Discretization (Modal)

o For every element /;, the approximate solution U;(¢, ),
can be expressed in terms of the variable ¢:

Uj(&t) =) U; for &e[—1,1], where
/=0
(
vt = 2L [ [ Uie PO dE (=01

# By using the properties of the Legendre polynomials

! 2
| P& Pul€) s = 57 b, and

P(1) = 1, Pi(~1) = (=1

/]
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DGM-1D: ODE (Modal)

® Semi-discretized form —

d g 20417 0P(§)
Fui == | [ e n TEL a-

(F;))@) = (~) B (-1))(®))]

# Map from spectral to physical space (Uf(t) = U;(1))
# The final approximation can be expressed as

d .
EUJ- =L(U;) in (0,7)

/4
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DGM-1D: Modal Vs Nodal

#® The nodal basis set is constructed using
Lagrange-Legendre polynomials (k;(£)) with roots at
Gauss-Lobatto quadrature points.

® Semi-discretized form —

d .
%U L(U;) in (0,7)

/]
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Modal vs Nodal

1D basis function for an expansion of order N =4

* % * — * * * —
-1 -0.65 0 0.65 1 -1 -0.65 0 0.65 1

Modal Basis Nodal Basis
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Time Integration

# Total variation diminishing third-order Runge-Kutta
(TVD-RK) scheme (Gottlieb et al., 2001)

vl = U+ ALL(UM)

3 1 1
2) — Z2pgn ) 4 = (1)
U U+ U0+ At
gt = 1U”+2U<2)JrgAtL(U@)).
3 3 3

where the superscripts » and n + 1 denote time levels ¢
and t + At, respectively

# Note: The Courant number for the DG scheme is
estimated to be 1/(2k + 1), where k Is the degree of the

polynomial, however, no theoretical proof exists when
k > 1 (Cockburn and Shu, 1989).

/]
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DG-1D: Numerical Examples

Ut + Fr(U) =0, Q=[—1,1], periodic domain. For linear advection (Gaussian-hill)
F(U) = U, and for the Burgers Eqn. F(U) = U? /2.

DG 1d (Nel=40, k=5, 9t=0.0001) 0010 BurgersEan (heB0, =)
1.0 T
0.5 T
0.0:
05
1.0 0.5 0.0 0.5 1.0 T T,
Numerical & Exact Solution Numerical solution

y/
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DGM in 2D

® 2D scalar conservation law

oU

E+V ]—"(U) S(U), in Qx(0,T);V(x,y) €

where U = U(x,y,t), V= (0/0x,0/0y), F = (F,G) IS
the flux function, and S is the source term.

# Domain: The domain €2 Is partitioned into N, x N,
rectangular non-overlapping elements €2;; such that

Qij =(z,y) |7 € |7i_1/2, Tiv1/2)s ¥ € [Yj—1/2: Yjt1/2] )
for +=1,2,..., Nz, Jj=1,2,...,N,.

/]
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Weak Galerkin Formulation

o Consider an element €2;; and an approximate solution
Uy, In the finite dimensional vector space V,(?).

# Multiplication of the basic equation by a test function
©n € Vi, and integration over the element €2;; by parts,
results in a weak Galerkin formulation of the problem:

7y
ot Jo,

[ R - iiends = / S(Up) ond??
8Q¢j Qz’j

UhSOth_/ F(Un) - Vipp, dQ2

where F(U,,) - #i is analytic flux and 7 is the outward-facing

unit normal vector on the element boundary 052;;.

Fﬁ NCAR
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DGM: Flux term

# Along the boundaries of an element 052;;, the function
U;, 1s discontinuous.

# Therefore, the analytic flux F(U;) - 7 must be replaced
by a numerical flux F (U,", U;")

» U, and U;" are the left and right limits of the
discontinuous function U,

Element (Left) Element (Right) Element (Left) Element (Right)

Up- N /Uh+ Uh\ /Uh

After Num. Flux Operation

/]
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DGM: Numerical Flux

# Numerical flux resolves the discontinuity of the
element edges and provides only mechanism by which
adjacent element interact.

# A variety of numerical flux schemes are available for
the Reimann problem (Cockburn & Shu, 2001).

# For simplicity, the Lax-Friedrichs numerical flux is used:

FU, . UN = [(FU;) +FUH) it — aUF = U;)],

DO | —

# [or a system, « is the upper bound for the absolute
value of eigenvalues of the flux Jacobian F'(U).

/]
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Discretization (Modal)

# Choose a modal (orthogonal) basis as a set of
Legendre polynomials, B = {F(¢), =0,1,...,N}

® Map (z,y) = (&,n) € [-1,1] ® |1, 1], reference element
such that £ = 2(x — x;)/Ax;, n =2y —vy;)/Ay;.

# Expand approximate solution U;; and test function In
terms of tensor-product functions from the basis set.

N N

Usj(&:mt) = > Y Uijom(t) Po(€) Pm(n),  where
/=0 m=0

1 1
Gijon(t) = 2 [ [ e .0 P P dedn

—1J=

/]
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Discretization (Nodal)

# The nodal basis set is constructed using a
tensor-product of Lagrange-Legendre polynomials
(hi(&)) with roots at Gauss-Lobatto quadrature points.

N N

i=0 j=0

(&2 —1) Py(¢)
N(N+1)Py(&) (&)

® Final form for the modal discretization

hi(§) =

d (20+1)(2m +1)
—Ujjom(t) = I ra I/ UL I ource] s
—Uijem(1) Y Ars Ay, Icrad + TFiuz + ISource]

/]
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Time Integration

# Evaluate the integrals (RHS) using GLL quadrature
rule.

® Solve the ODE

d
# A third-order total variation diminishing (TVD)
Runge-Kutta scheme (same as in the case of 1D)

without a filter or limiter.

/]
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Solid-body rotation test

2D Cartesian

(z —m/2)% + 92,

(x,y) = Qo exp( 742), 2

(400 elements, k = 3)

Gaussian-Hill

2

|

[7T7T

R
R

3 IR
R RIS
SIS G0

IR NN =
ORI
e~

o
R

X
KX

© N

© S

AR 3N W

N
W KRS
T ARSI
T Sy

SIS o)
o O N
SRRSO

Ry

.I‘Ill.“"‘“

f

R RTTR
G
LG
KRS
NI
ORI
o
;

X
%
%

K

X
0

© N

© o
AR 3N W

WY
=0

-
RS
SR

—
BSNISINY
R %..eﬂ?
ORX
ORISR
e UK
QR
s

N
...:.w.....,
QU

.
OORAKK
OB

2 ///’I

S
S

=2 l/[/{l/

)
5
2

S

S
===

i
0
s‘o

Numerical solution after one rotation

Initial solution

J
™
N
o
|
=
<
Q
(@]



2D Cartesian: Convergence

o 2D h-error (rotation) o 2D p—error (rotation)
10 ‘ ‘ 10 ‘ ‘
107+
*
@ )
S 10 * 3
(%] n
(o)) (=2
o * 2
S 10° 2
i, * L
-8
10 [ —— k=1
k=2 T .
v k=3 —— 40 x 40 grid
~10| L k=4 _u4| |~ 160 x 160 grid
10 1 1 1 1 10 T T 1 1 1
400 1600 6400 25600 1 2 3 4 5 6 7 8
N Degree of Legendre polynomial

Solid-body rotation of a Gaussian-Hill

/4
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2D: Limiter Option

# Montonic option for DGM: WENO limiter

AU

”li;,,\

n
"H‘ ““

§.\

\

sl
i

‘\\\\\ \\\

\\\\ i

|

R
| Wy

0
"'"0 0‘0 i

Non-smooth Vortex on a (1600 x 4 x 4) grid. Exact vs Numerical solutions, after 3 time units
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DGM: Spherical Geometry

#® The sphere is decomposed into 6 identical regions,
using the central (gnomonic) projection:

r=atan A, y = atané sec \,| 2a IS the cube side.

» Local coordinate systems are free of singularities

» have identical metric terms
s Ccreates a non-orthogonal curvilinear coordinate
system

# Metric tensor of the transformation is defined as
Gij = a; - ajy, 1,] € {1,2}.

# The components of the covariant vectors (u;) and the
contravariant vectors (u*) are related through:

: T y i 1
U; = Gijuj, ut = GZJU]', GY = (G@J)

/]
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Equiangular Projection

Central angles z', 2 € [—r/4, 7 /4] are the independent
variables. Let p? = 1 + tan? ! + tan? 22, metric tensor

R? i 1 + tan? 2t — tanz! tan z? |

p* cos? xl cos?2 2?2 | —tanaz! tan z? 1 + tan? 22

Gij =

y/
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Transform: Cube < Sphere

# The spherical velocity vector v(\,0) = (u,v), can be
expressed in terms of covariant vector u; = v - ay,
U9 =Vv-ags, = V= u1a1 -+ uzag.

#® Metric tensor of the transformation is defined by

_ RcosfON/0xt  RcosfON/Ox? _

Gii=AlA: A=
/ RO0/0x! R 00/0x?

# The matrix A can be used for transforming spherical
velocity (u,v) to the cubed-sphere velocity vectors.

U U
A =
U v

/]
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SWE on the Cubed-Sphere

In curvilinear coordinates, the continuity and momentum
equations for the flux form shallow water system can be

written as follows (Sadourny 1972; Rancic et al. 1996;
Nair et al. 2005 (MWR)) :

9, 5 B
(\/ h)+ 5 (\/Gu h)+ 5 5(VGuPh) = 0
9, 9,
B Tt = Voo,
0 0
where

1 [32@ 8u1w
J Lf?frl HTQJ

Eﬁ NCAR DGAM — p.29/4



Flux form SWE

% % %
5 U+ 5 7F1(U) + 5 5F3(U) = S(U)

where U = {\/@h,ul,ug}T, F, = {\/@hul,E,O}T
_ {\/éhuQ,O,E:T, S = [0,\/6u2(f+g),—\/6u1(f+<)r.

# Each face of the cubed-sphere is partitioned into
N, x N, rectangular non-overlapping elements €;;

# Each element is mapped onto the reference element
[_17 1] & [_17 1]

# Total number of elements on the cubed sphere is
6 X N, X N,.

/]
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Computational Domain

Cubed-Sphere (N, = 5) with 8 x 8 GLL points

05“ 11 1,1
SIEN N
A anmn e
+++++ [E=iamn: f*ﬂl L 60— ¢ ¢ ¢ 00
iR T Rl
rrrrrrrrrrrrrrrr S| BEEEEE| (S s oo R &’
+ . |
S mmajjaat O0-O0—0 O O O—O0-0
\tpt\:‘ \7f7‘ JFF\*II LL
AESSL teseeny
*’% j “"ij}iﬁT} Q I I g
(_17_1) EI (17_1)

® SWE test suite by Willlamson et al. (1992, JCP).

y/
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Flux computation at cube edges

Face — A Face - B
S RSN &
" 7;/;‘“ Sus ,\;\/7 \
i = ainmse RN
A AT ‘&\x
T H/Tjﬂ’ —— mE TTL’T T
jr2i TN ] S S| o B ER W ey PN
= = i +
AT “HIA P
i NS E KL/ KEARE ik
Mat| AT (o e {5 ) o ) (N RERRE) 11
VRN AT e | Y N A I i
AL AR T HHH i’fr\*\iq ,L‘L‘II Wil
L \\r\xjg, -t ﬁ:@ I III/’][ L / 4
ﬁ*’ ms! SRS :f ay 182
o w8 Ny S W 7 y x
o gl Ny 7 L,
_ y

To compute the flux on the edge of the cubed-sphere, P,
both the left and right components F; and F are required.

Ft | FF FiF 4 Ft

Fit
GY

/4
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SW Test-1

# Numerical Flux: Lax-Friedrichs; eigenvalues of F'(U)

o' = max (|U1\ + \/W) . o’ =max (\u2| + \/W)

R\
\\Q}:—a

[/
l{(\ ;
R
U\

/
i
:
-

—

SW Test case-1: Solid-body rotation of a cosine-bell (a« = 7/4)

y/
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SW Test-1: Modal & Nodal

DGM—Modal (NE-Flow: 96x16x16) DGM—Modal (NE-Flow: 96x16x16)
0.006 [ T T T T T ] 0.006[ T T T T T ]
r L, ] r L, ]
0.005— R 8 . 0.005— R 8 .
s r L. i s r L ]
5 0.004F = o 0.004+ —
= F B = F B
o L ] ] L ]
S 0.0031- . S 0.0031- .
= L K = L K
E 0.002 . E 0.002 -
o L 1 15 L i
z L ] z L i
0.001 0.001
0.000 0.000
0 48 96 144 192 240 288 0 48 96 144 192 240 288
Hours Hours
DGM—Nodal (NE—-Flow: 96x16x16) SEM—Nodal (NE-Flow: 96x16x16)
0.006 [ T T T T T ] 0.006[ T T T T T ]
r L, ] r L, ]
0.005 _ . 0.005 _ .
. [ lw ] . [ lw ]
o |- 4 (=] . =
£ 0.004— B £ 0.004— —
= r 1 = r 1
] L ] ] L ]
S 0.003 5 S 0.003 5
5 : . E ’ RS /
E 0.002[ E 0.002[ AR ]
[=] = =) | 4
zZ [ zZ L ]
0.001 . 0.001 j
00007 L L L L L i 00007 L L L L L i
0 48 96 144 192 240 288 0 48 96 144 192 240 288
Hours Hours
Modal vs Nodal DGM vs SEM
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SW Test-1: Movie

SW1 Movie

y
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Deformational Flow

ldealized Cyclogenisis: (Doswell 1985; Nair et al. 1999).

/ 9/
Y(N,0',t) =1 — tanh [p (7 ) sin(\ — w't)

Max error is O(107°).

y/
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Deformational Flow

Voretx Movie
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Flow

1C

. Geostrophi

SW Test-2

DGM: SW Test—2, Convergence

Ne) €O o Q <
] | — — —
o o o | | |
— — — o o o
— ~— ~—

12 16

Degree of the Legendre Polynomial

(a) DG 150x8x8: Geostrophic Flow (Day-5)

Height Difference (Num — Exact)

(b)

Steady state geostrophic flow (o = 7/4). Max height error is O(10=%) m.

DGAM — p.38/4
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SW Test-5: Flow over a mountain

(a) DG 864x4x4: Isolated Mountain (Day-0)

o812 51500
E—=>5251— - - — 5250 — - 1x10-14
£5400 ———————————————————— 5400 ———— ———— r
E—s5600=~ 5600 =
——35800 — — ———5800 — — — 5x10-15
5900 —— 5900 —— —
0
—— 5900 —— —— 5900 —
= 5800 = = = q“@
5600 = = ———5600— _5x10-15
"""""""""""""" 5400 — — 5400 —|
5250 : : : : 5250 — L
A i i e —1x10-14
4x10-8
2x10-6
—-2x1076
—4x1076
0.0004
0.0002
0.0000
—-0.0002
-0.0004 [

Days

(a) Normalized Mass (DG: 864x4x4)

’d\_ » — w
0 3 6 9 12 15
Days
(b) Normalized Energy
0 3 6 9 12 15
Days
(c¢) Normalized Potential Enstrophy
0 3 6 9 12 15

Zonal flow over a mountain: (864 x 4 x 4) grid, after 5 and 15 days of integration

/4
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SW5 Movie

SW5 Movie
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SW Test-6: Rrossby-Haurwitz Wave

(Day-0)

(a) Rossby—Haurwitz Wave

(b)

Rossby—Haurwitz Wave (Day—7)

(¢) Rossby—Haurwitz Wave (Day—14)

(864 x 4 x 4) Grid.

DGAM — p.41/4
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SW6 Movie

SW6 Movie
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Parallel Performance

# Strong Scaling: Hold total work constant, increase
number of processes.

s EXxpect to cut runtime in half by doubling process
count.

s In reality, computation time decreases but
communication time remains approx. constant.
# Weak Scaling: Hold work per process constant,
regardless of process count.

s EXxpect runtime to remain constant, regardless of
process count.

» Since computation time remains constant,
communication time has similar effect at all
process counts.

# Primarily interested in strong scaling.

i‘ NCAR DGAM — p.43/4



Performance - Hemisphere

® Linux cluster with 64 DP nodes, Intel Xenon 2.4 GHz,
8 x 8 Dolphin torus

500 T T T

400

300

200 —

Sust ai ned MFLOP/ sec/ processor

100 .

150 ( 5 x 5 x 6) elenments, strong scaling, 1/2 it O
384 ( 8 x 8 x 6) elenents, strong scaling, 1/2 —K—
var (ne x ne x 6) / P =150, weak scaling, 1/2 --K--
384 ( 8 X 8 x 6) elenments, Istrong scal i ng, 1/2|(opti m zed) - 3 R
0
2 8 32 128

Processors

Note: 350 Mflop/Sec ~ 14.5% peak

y/
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Performance - Frost

® |IBM BGI/L, 1024 DP nodes, 700 MHz PPC 440s,
8 x 8 x 16 torus and tree

400

350

300 -

250

200

150

Sust ai ned MFLOP/ sec/ processor

100

50

1536 (16 x 16 x 6) elenents, strong scaling, 1/2 ---%---
1536|(16 X 16 X 6)I el enent s, strong scal i ng, 2/ 2 ﬁl&

2 8 32 128 512 1024 2048
Processors

Note: 225 Mflop/Sec ~ 8.0% peak

y/
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Summary

#® Discontinuous Galerkin Method (DGM) based flux form
shallow water model has been developed on the
cubed-sphere (Nair et al. 2005 (MWR))

# Both modal and nodal versions give almost identical
results

# The DG model has been implemented in NCAR
high-order method modeling (HOMME) frame work.

#® Numerical results either comparable or better than a
standard spectral element method and DG scheme
exhibits exponential convergence for SW test case-2

#® DG solutions of the SW test cases are much better
than those of a spectral model (Jacob-Chien et al.
1995) for a given spatial resolution.

/]
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Summary

# For high-order spatial discretization, the solution do not
exhibit spurious oscillation for the flow over a mountain
test case.

# DG model conserves mass to machine precision.
Conservation of total energy and enstrophy is better
preserved than the existing finite-volume models.

# |Initial scaling results are promising.

# Future work: Development of a 3D DGAM dynamical
core, efficient time integration scheme, limiters,
performance study on BG/L.
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